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Abstract— Smartphones are equipped with sensors such as 
accelerometers, gyroscope and GPS in one cost-effective device with 
an acceptable level of accuracy. Research has been carried out to 
determine the roughness of roads via smartphones. In order to justify 
the validity of using smartphones as tool to define the roughness of 
the road, it must be compared to other subjective methods such as 
user opinion. The aim of this paper is to calculate the roughness of 
the road via a smartphone using its embedded sensors. Additionally, 
this paper will investigate the correlation of road roughness with a 
user opinion to conclude ride quality. Moreover, the applicability of 
using smartphones to assess the road surface distresses is examined. 
Furthermore, to validate the smartphone sensor outputs objectively, 
the Road Surface Profiler is applied. Finally, a good roughness model 
is developed which demonstrates an acceptable level of correlation 
between the road roughness measured by smartphones and the ride 
quality rated by users. 

Keywords— Road Roughness; Smartphone; User Opinion; 
Sensors; GPS; Accelerometer; Gyroscope. 

I.  INTRODUCTION 
According to ASTM standard E867, the road roughness 

can be defined as “the deviation of a surface from a true planar 
surface with characteristic dimensions that affect the vehicle 
dynamics and ride quality” [1]. Road roughness is a criterion 
that is used to describe the road condition and the ride quality 
which is usually measured by an index such as the 
International Roughness Index (IRI).  

Road roughness is a significant aspect for both travellers 
and city officials. Travellers are concerned about ride comfort 
and their vehicle's operating costs. Hence, city officials utilise 
the road roughness as an essential indicator to conduct an 
optimum road maintenance planning which significantly saves 
the life cycle, costs, and prolongs the service life of the roads.  

Two major methods are used to collect the road roughness 
data: manual and automated (or semi-automated). Generally, 
manual data collection is labour-intensive, unsafe, time-
consuming, and costly. On the other hand, automated data 
collection is precise, fast, safe, repeatable, and standardised. 
Automated data collection devices such as laser scanners and 
profilers are very expensive to purchase, operate, and 
maintain.  
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It is rarely feasible for city officials in developing 
countries to conduct data collection using such devices to 
frequently monitor the entire road network condition. 
Alternative devices for road roughness data collection are 
smartphones. 

Regarding the advancements achieved by researchers in 
the smartphone industry, several inexpensive sensors are 
embedded in smartphones such as 3-axis accelerometers, a 
gyroscope, and a GPS. These sensors are commonly deployed 
in different smartphone applications such as games and 
navigations; however, they can be applied in engineering 
fields of study such as transportation engineering. 

II. LITERATURE REVIEW 
Recently, cost-effective sensors have been applied in 

different fields of transportation such as traffic engineering 
and road management. Mohan et al. (2008) investigated road 
and traffic condition by different sensors such as 
accelerometer, microphone, GSM radio, and GPS in order to 
detect bumps, braking, and honking of the horn [2]. They 
investigated the traffic condition by considering the synchrony 
of honking with accelerometer data and braking with camera 
through the application of a threshold based method [2]. Some 
years later, Bhoraskar et al. (2012) employed a machine 
learning method instead of the threshold based method which 
ended up with detecting bumps and vehicle braking [3].  

Furthermore, road distress detection is one of the 
applications of smartphones in road management. Researchers 
have proposed different algorithms for detecting different 
types of potholes [2, 4–7]. Eriksson et al. utilised smartphones 
to investigate road anomalies [4]. They introduced a system 
which was called "pothole patrol". Seven running taxis were 
hired and were equipped with smartphones to monitor the 
surface condition of roads to detect potholes through sharp 
vertical vibration of vehicles [4]. Mednis et al. (2011) defined 
"Z-THRESH" determining a threshold for the z-axis 
accelerometer data. The values outside the threshold were 
defined as various types of potholes. They also developed a 
new algorithm for detecting the anomalies called "G-ZERO" 
indicating a threshold in which all three axis accelerometer 
data have a value close to 0g (zero gravity) [5]. Aksamit and 
Szmechta (2011) evaluated the road quality by processing 
signals from accelerometers of smartphones mounted on four 
different locations in a car [8]. Seraj et al. (2014) employed 
Support Vector Machine (SVM) to distinguish and classify 
road anomalies. As a result, they devised a real-time multi-
class road anomaly detector which was able to spot 
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approximately 90 percent of severe anomalies [9]. Tai et al. 
(2010) applied smartphones with a 3-axis accelerometer when 
riding a motorcycle to detect road anomalies and evaluate the 
road quality with a high precision of 78.5% [10].  

Moreover, road roughness has been studied using the 
embedded sensors within smartphones. The 
"SmartRoadSense" system introduced by Alessandroni et al. 
(2014) aimed to monitor road surfaces via smartphones. They 
developed a model in this study to calculate an index for the 
road roughness from captured data via the system [11]. 
Finally, they color-coded road sections on a map to prioritise 
the pavement rehabilitation [11]. Douangphachanh and 
Oneyama (2013, 2014) determined road conditions by 
utilising the VIMS component as a reference for calculating a 
road roughness index. They collected the data by the 
AndroSensor application installed on smartphones to 
determine road profiles and compute IRI [12, 13]. Islam et. al. 
(2014) numerically double-integrated acceleration data and 
processed them via a computer software, Proval [14, 15]. The 
study was conducted in three different sites for gathering road 
profile and acceleration data with both an inertial profiler and 
a smartphone mounted on a vehicle [15]. The outputs revealed 
that the smartphone devices were able to measure IRI with an 
acceptable accuracy compared with an inertial profiler [15]. 
Zeng et al. (2015) calculated the road roughness based on a 
normalised acceleration index. Data gathering was 
accomplished by employing two tablets mounted on a vehicle. 
The tablet sensors captured acceleration data in three 
dimensions, GPS coordinates, and vehicle speeds [16]. They 
declared that the proposed index could correctly detect 
deficient road segments at a high precision of 80 to 93 percent 
[16]. Hanson et al. (2014) attempted to correlate the road 
roughness captured by smartphones and a conventional 
profiler. They employed eleven different segments on one 
kilometre stretch of a secondary highway in New Brunswick, 
Canada and came up with the conclusion that there was a good 
correlation between output of the profiler and smartphone 
[17]. 

Panel rating has been applied to investigate the ride quality 
of pavement [18]. It is the best subjective method to collect 
the traveller's opinion about ride quality which can be 
effectively applied to validate the objective measurement of 
road roughness. The subjective validation of road roughness 
measured by smartphones has not been taken into much 
consideration. In other words, no one has investigated whether 
the smartphone roughness outputs would represent the real 
sense of users from the ride quality. This paper aims to fill this 
void and to investigate the correlation between the objective 

roughness measurements by smartphones and subjective rating 
by a panel. 

III. AIMS AND OBJECTIVES 
The main aim of this study is to examine the correlation 

between road roughness measured by smartphones mounted 
on a vehicle and user opinions obtained through a panel rating 
on the ride quality of the road. The scope of this study is 
calculating the road roughness in urban transportation 
networks on asphalt surface roads. 

IV. METHODOLOGY  
The research study was conducted through different 

processes including data collection, road indices 
measurements, and investigation of the validation and 
correlation of the indices. Fig. 1 schematically depicts the 
study approach. 

 

 
Fig. 1. Schematic study approach 
 

This study can be divided into three modules. The first 
module is to design an experiment. For this purpose, a pilot 
study was carried out to capture some sample data to detect 
the drawbacks and issues that may arise in the experiment. In 
the second module, road conditions are measured using 
smartphones and panel rating. Finally, in the third module, the 
roughness obtained through smartphones is validated by a 
Road Surface Profiler (RSP) and the correlation between the 
roughness computed via the smartphones and the panel is 
investigated. Fig. 2 shows the study's research methodology. 

 
 

Fig.2. Research Methodology 
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A. Module 1: Pilot Study 
The pilot data collection was conducted through panel 

ratings and smartphones. The experiment was initiated by 
designing guidelines for smartphone data collection and panel 
rating. The guideline for smartphone data collection was 
covered by the method of mounting the smartphones on the 
vehicle dashboard, running the smartphone application, and 
transferring the data to the station. The other guideline was 
developed for the panel. It described the method of road 
surface defect assessment i.e., it contained definitions of 
asphalt road distress types along with their various categories 
of severity and density. The guideline also categorised user 
opinions about the ride quality levels into five groups: very 
good, good, moderate, poor, and very poor. For instance, 
“good” expresses a condition that a driver feels comfortable 
and does not feel any jump when the car moves along the 
road, although the driver has a slight vibration sensation. 

Participants were divided in different groups/vehicles. 
Each group included three members: a driver, a surveyor, and 
a rating assessor. The driver drove the car in a predetermined 
segment at the speed of 20 to 50 km/h. The surveyor sat in the 
front seat of the car and was responsible for both surveying the 
road condition and running a smartphone application. The 
smartphone was mounted on the car dashboard as shown in 
Fig. 3 to record GPS and the accelerometer data. The rating 
assessor, whom sat on the rear seat of the car, rated the ride 
quality. Moreover, a smartphone was mounted to the car 
windshield (Fig. 3) to capture a video of the segment to 
validate the rating of surveyors and assessor. 

The data was captured from a segment divided into five 
sections (approximately one kilometre) located in an arterial 
street in the urban transportation network of Tehran, Iran by a 
team of more than 40 participants. The test was repeated three 
times in order to increase the validity of the experiment. 
Afterwards, the collected pilot data was successfully 
processed. After data processing, some minor shortcomings 
were detected such as (1) missing accelerometer data in some 
sections because of a surveyor’s mistake to run the 
smartphones application (2) missing videos due to the 
shortage of smartphones memory. The shortcomings were 
both systematic errors due to the human mistakes. To prevent 
these errors occurring again in the main data collection, 
comprehensive explanation/training sessions were held for the 
participants. 
 

 
Fig. 3. Smartphones attached over the dashboard and on the car 

windshield 

B. Module 2: Roughness Measurement 
Having accomplished the pilot study and held the 

explanation/training sessions, the final data collection was 
carried out in September 2015 on the same segment and 
repeated five times by the trained participants. The raw data 
was applied to measure three meaningful indices which 
represent the road condition. These indices are described 
below. 

1) Road Condition Indicies 

Indices applied herein included Ride Quality Index (RQI), 
Root Mean Square (RMS), and Road Distress Index (RDI). 
The first index was RQI describing users' opinion about the 
road roughness while they were riding over roads. The RQI 
varies between 0 to 5 in which 0 represents the very poor 
condition, while 5 expresses the very good condition [19]. 
Table 1 shows the verbal description of different condition 
levels. 

TABLE 1 Ride Quality Index 

Verbal Rating Numerical Rating 
Very good 4.1 - 5.0 

Good 3.1 - 4.0 

Fair 2.1 - 3.0 

Poor 1.1 - 2.0 

Very poor 0.0 - 1.0 

The second index was RMS deployed to assess vertical 
acceleration of vehicles. The vertical acceleration was 
measured via a smartphone application which used the 
accelerometer sensor embedded in the smartphones. The 
application recorded and stored acceleration data every 
500ms. Equation (1) was employed to calculate RMS [16]. 

                                 (1) 
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RMS = Root Mean Square of acceleration data 

N = total number of acceleration records for each section 

azi = the ith vertical acceleration record 

g = gravity 

The third index was RDI defined as the weighted 
summation of severity and density of six selected road 
distresses (shown in Table 2). The distresses and the 
associated weights were determined based on an expert 
knowledge. These road distresses have the most significant 
impact on the roughness and surface defects of asphalt 
pavement.  To obtain a single quantitative index for the road 
distresses on each section, Equation (2) was utilised. 

                                       (2) 

RDI = Road Distress Index 

i = distress type 

Wi = weighting factor for each distress (Table 2) 

si = severity of distress (High = 3, Moderate = 2, Low=1) 

di = density of distress (in meter or square meter) 

TABLE 2 Selected distresses and weights 

Distress type Wi 

Longitude crack 2 

Transverse crack 2 

Alligator crack 3 

pothole 3 

patching 1 

corrugation 1.5 

2) 11BData Processing 
The data preparation was carried out by checking for a few 

criteria: completeness, consistency, outliers, systematic errors, 
precision, and repeatability. After a thorough review of the 
collected data, it was concluded that the data was complete 
and consistent. However, there were a few outliers in the data 
detected (Fig. 4(a)), using the boxplot method they were 
eliminated (Fig. 4(b)). Having a few outliers seems logical in 
terms of using a sensitive sensor such as an accelerometer or 
panel rating. For instance, as shown in Fig. 4(a) in the panel 
rating, there are few outliers related to sections 3 and 4. After 
a close investigation and discussion with the corresponding 
assessors, it appeared that they made some mistakes so that the 
associated data were removed. Fig. 4(b) shows the captured 
data after data preparation which does not have any outlier. 

 
 

 
Fig.4(a). Panel rating by sections with outliers 

 

 
Fig. 4(b). Panel rating by sections after removing outliers 

 
Furthermore, subjective rating is susceptible to suffer from 

systematic errors such as leniency and severity error and 
central tendency effect [20, 21]. Leniency and severity errors 
are defined as the deviation of each assessor's rating from the 
grand mean which is defined as the average of all assessor's 
rating (Table 3). "Delta R" in Table 3 shows the difference 
between grand mean and the average of assessor's ratings i.e., 
error.  If an assessor rated a section too high or too low from 
the grand mean, leniency error and severity error would occur 
respectively. The last column, “Rank” priorities the assessors 
based on the highest difference from grand mean e.g., assessor 
10 has the first rank due to his highest difference from the 
grand i.e., this assessor assessed the segment in the worst case 
comparing to the grand mean. As shown in Table 3, the 
magnitude of leniency and severity of the errors were 
negligible i.e., all errors are within two standard deviations of 
assessors. 

 
TABLE 3 Deviation from the mean of ride quality rating. 

 Ride Quality Rating 
Rater Mean SD Delta R Rank 

1 3.71 0.135 0.41 5 
2 3.23 0.094 -0.07 8 
3 2.98 0.184 -0.32 6 
4 2.43 0.061 -0.87 2 
5 2.66 0.146 -0.64 4 
6 2.43 0.504 -0.87 2 
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7 3.71 0.135 0.41 5 
8 3.23 0.094 -0.07 8 
9 3.43 0.17 0.13 7 

10 4.5 0.418 1.2 1 
11 3.95 0.218 0.65 3 

Mean 3.3 0.652 0 --- 
 
Central Tendency Effect is defined as the tendency of an 

assessor to rate most cases on average rather than using high 
or low values. The range of assessors' rating was used as an 
indicator for this effect. This range should be high regarding 
the fact that the road segment was of different condition levels 
from very good to very poor. As shown in Table 4, the ranges 
of rating are adequately high. Therefore, no adjustments were 
required i.e., all ranges are within one standard deviation of 
ratings. 

 

TABLE 4 Different range used by each assessor. 

Assessor 1 2 3 4 5 6 7 8 9 10 11 

Ride 
quality 

 

2.25 1.38 1.75 0.81 1.75 2.63 2.25 1.38 2.5 2.5 2.5 

 
To assess the precision of assessors, their rating on a single 

section should be almost identical. It means the standard 
deviation of rating should be low, while that of sections should 
be high. Sections should cover a wide range of road conditions 
i.e., a high variance, while the assessors should rate the same 
sections approximately as the same meaning of low variance. 
To investigate the variances, Analysis of Variance (ANOVA) 
test was conducted on sections and assessors at 5% level of 
confidence. Table 5 shows that the differences in standard 
deviation among assessors were not significant (sig>0.05), 
while the differences among standard deviation of section 
condition are significant (sig<0.05) as expected. Therefore, 
assessors would rate the sections at a sufficient precision. 

 

TABLE 5 ANOVA test for ride quality ratings. 

Source  Ride quality ratings 

SS df MS F sig 

Between sections 8.282 4 2.071 6.650 .000 

Between assessors 7.473 10 0.747 1.975 0.063 

Total  22.604 50 NA NA NA 

 
In order to check the repeatability of the indices proposed 

from measurements by smartphones and the panel (RMS and 
RQI, respectively), their standard deviation (SD) and 
coefficient of variation (CV) were measured as presented in 
Table 6. The SDs are sufficiently low and CVs are almost all 
less than 8% except one which is 12.8% that is low enough 
(less than 20%). The figures express that on a single section, 
although five replications were conducted, the standard 
deviation and coefficient of variation of collected data on the 

section are low enough to present the repeatability of the 
experiment. 

 
TABLE 6 Repeatability of roughness data 

Section 
number 

Average 
RQI 

SD CV Average 
RMS 
(m/s2) 

SD 
(m/s2) 

CV 

1 3.6 0.233 8.5% 0.60 0.051 6.5% 
2 2.8 0.095 5.6% 0.91 0.051 3.5% 
3 2.4 0.110 7.8% 0.94 0.073 4.6% 
4 1.6 0.254 7.9% 1.15 0.091 12.8% 
5 3.0 0.118 7.9% 0.84 0.067 4.0% 

 
Fig. 5 shows RMS corresponding to each section for five 

replicates (runs). This figure illuminates that the replicates for 
each section are almost identical. To prove this fact, a two-
way analysis of variance (ANOVA) was conducted showing 
that there was not a significant difference between different 
runs at 95% level of confidence. The ANOVA test supports 
the fact that there are no significant differences between 
replicates using smartphone expressing the data collection 
reparability. 

 

 
Fig. 5. RMS over five different runs for each section 

 

C. 9BModule 3: Validation and Correlation 
Having calculated the road roughness using the indices 

mentioned above, the next step was to validate the roughness 
measured via smartphones (i.e., RMS) with the ground truth. 
The ground truth was attained through application of the Road 
Surface Profiler (RSP) which indicated the International 
Roughness Index (IRI) of the road. For this purpose, the 
roughness of road sections was simultaneously measured 
using RSP and smartphones with three to five replications. 
The measurements are shown in Fig. 6(a) and Fig. 6(b). The 
trend of the data illuminated in Fig. 6(a) makes engineering 
sense i.e., the more the RMS meaning vertical vibration, the 
more the IRI. It is observed that there is a good correlation 
between RMS and IRI with a good coefficient of 
determination of 0.757 and a high correlation coefficient of 
0.870 (Fig. 6(b)). This figure illustrates the insignificant 
distance between RMS and RSP measurements. 

Moreover, having calculated an equilibrium (3) between 
RMS and a conventional index such as IRI would help to 
measure the roughness through the application of RMS which 
can be computed using a smartphone that is inexpensive, easy 
to implement, and widely accessible to estimate IRI instead of 
employing RSP which is of a high cost (in terms of capital 
cost, operation, and maintenance). For instance, if the RMS 

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 11, 2017 

ISSN: 2074-1294 60



for a road section measured via a smartphone is equal to 0.1, 
the IRI is approximated using (3) which is equal to 2.1 mm/m 
(4.19×0.1 + 1.73 = 2.1). 

 
                     (3) 

IRI = International Roughness Index 
RMS = Root Mean Square of acceleration data 
 

 
 

Fig. 6(a). Relationship between roughness (IRI) and vertical acceleration 
(RMS) 

 

 
 

Fig. 6(b). Correlation between IRI and RMS 
 

1) Correlation Between RMS and RDI 
The correlation investigation was conducted between RMS 

and RDI. It was to examine whether or not RMS has 
significant coloration with RDI. In other words, it is to 
investigate that if the road roughness (RMS) is correlated with 
the road surface distress (RDI). The captured data were plotted 
i.e., RMS versus RDI (Fig. 7(a)). The linear regression 
illustrates that RDI could not be an adequate predictor for the 
RMS (R2=0.5). This result makes engineering sense regarding 
the fact that the measured distresses are not totally related to 
the road roughness leading to the vertical acceleration of the 
vehicle. Therefore, there may be a road section with several 

distresses (such as transverse and longitudinal cracking and 
patching) but be relatively smooth. On the contrary, a road 
section may be rough without several road surface distresses. 
Furthermore, the road roughness is measured under wheel 
paths not the whole area in a lane. There could be a road 
section with surface defects on areas between the wheel paths 
(not under the wheel path). In this case, RMS would be low, 
while RDI could be high. Therefore, it makes logical and 
engineering sense that RMS and RDI are not highly 
correlated. 

 
2) Correlation Between RMS and RQI 
Finally, the correlation between RMS and RQI was 

studied. This is to investigate whether the roughness measured 
by smartphones can represent the real sense of convenience 
from the user point of view called the ride quality (expressed 
by RQI). The acquired data (RMS versus RQI) were plotted in 
Fig. 7(b). As shown in this figure, RMS is highly related to 
RQI with a high coefficient of determination of 0.805. The 
trend of data and associated linear equation seems logical i.e., 
the more the RMS, the less the RQI.  

This is an important achievement of this study which 
validates the objective roughness measurements via 
smartphones with subjective ride quality obtained by the panel 
rating. In other words, the roughness index (RMS) calculated 
by smartphones has significant compatibility with the user 
opinion about the ride quality. Therefore, RMS can be applied 
as an indicator which is showing the real sense of comfort or 
discomfort for road users. 
 

 
 

Fig. 7(a). Relationship between roughness – pavement condition 
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Fig. 7(b). Relationship between roughness – user's opinions 
 

To sum up, it is concluded that smartphones can be 
deployed to estimate the road roughness at an adequate level 
of precision and accuracy. The smartphone measurements are 
not only highly correlated with IRI, but also, they represent 
significant correlation with the ride quality expressed by 
travellers. The latter correlation has not been investigated to 
date; however, the travellers’ opinion about the ride quality 
plays the main role in evaluating the roughness of a road. 
Subsequently, the outcomes obtained from smartphone 
accelerometer sensor can rigorously present the real road 
roughness with regards to the travellers’ sense of comfort. 
 

V. CONCLUSION 
The core of the road management systems is road data 
collection. Sophisticated vehicles facilitated by an array of 
sensors have been widely utilised to automatically capture the 
road roughness data. These vehicles are too expensive to 
purchase, operate, and maintain. A sustainable approach is to 
apply smartphones with embedded sensors such as an 
accelerometer and GPS which is cost-effective to collect the 
data with an acceptable level of accuracy and precision to 
estimate the road roughness. However, the road roughness 
measured by smartphones have not been validated by 
researchers through travellers’ comfort sense about ride 
quality. This paper aimed at investigating whether or not 
smartphones merely can represent the real sense of ride 
comfort of travellers. The founding of this study are 
summarised as follows:  
 

(1) Travellers’ opinions about road roughness had an 
excellent correlation (R2=0.8) with smartphone-based 
roughness measures. It emphasises that smartphones 
can express the road roughness which is compatible 
with travellers’ sense of comfort. So, smartphones 
can merely express the road roughness.  

(2) Smartphone-based roughness measures did not have a 
strong correlation (R2=0.5) with road distresses due 

to the fact that all distresses do not have an impact on 
the road roughness.  

(3) Smartphone-based roughness measures expressed a 
good correlation (R2 =0.76) with the International 
Roughness Index (IRI) measured by the Road Surface 
Profiler conveying the validity of smartphones 
outputs. Thus, through the application of an 
inexpensive smartphone, IRI can be approximated 
which is conventionally measured using the Road 
Surface Profiler that is of a high cost. 

 

VI. FURTHER WORK 
Throughout this study, the road roughness was 

investigated using smartphone sensors. These sensors have 
been employed within a vehicle and different assessors have 
been utilised. Due to the limited time for this study, a variety 
of assessors, vehicles and smartphones have been used to be 
able to investigate different roads simultaneously. However, 
the difference of opinions amongst the assessors have been 
considered but the differences between the drivers and the 
equipment such as smartphone and vehicle has not been 
analysed due to time. A strong recommendation to further 
enhance this study would be to analyse the effects of using 
different vehicles, smartphones, and drivers upon the 
determination of road roughness. On the other hand, these 
variables can be kept constant by using the same driver, 
assessor, vehicle, and smartphone to eliminate the effects of 
these variables. Furthermore, a smartphone can be placed at 
the rear of the vehicle so that an average can be taken to 
enhance the precision of the results. Moreover, the vibrations 
of the car suspensions can be used for this investigation as 
another variable to further support the results. 
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